ACIDS AND BASES

What is the pH of a $1.0 \times 10^{-8} \mathrm{M}$ solution of HBr ?
It cannot be pH 8.00. It should be an acidic solution with a pH lower than 7.00 !
There are two reactions that are important.

$$
\begin{aligned}
& \mathrm{HBr}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I) \rightarrow \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq}) \\
& 2 \mathrm{H}_{2} \mathrm{O}(I)<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
\end{aligned}
$$

H 8-4 Systematic Treatment of Equilibrium

General approach includes

1. write down the pertinent chemical reactions and their equilibrium expressions
2. write down all species present in solution according to \#1
3. set up the charge balance equation (the solution must be electrically neutral so the number of positive charges $=$ the number of negative charges)
4. apply the material balance equation (conservation of matter) - may be more than one
5. are there enough equations to solve for the unknowns?

Charge Balance - solution must be electrically neutral

EX 1. Write the charge balance for a solution containing only the following ions:

$$
\mathrm{H}^{+}, \mathrm{OH}^{-}, \mathrm{Na}^{+}, \mathrm{Ba}^{2+}, \mathrm{PO}_{4}^{3-}, \mathrm{Ag}^{+}, \mathrm{SO}_{4}^{2-}
$$

EX 2. Write the charge balance for a solution containing $\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4}$. Be sure to consider all possible equilibrium reactions.

Formality (F) and Molarity (M)
same for a species that does not dissociate into ions (or react with water to produce ions) such as glucose
molarity is the concentration of the actual species in solution such as $1 \mathrm{M} \mathrm{Cl}^{-}$
formality is the concentration originally placed in water - acetic acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ is a weak acid and reacts with water to produce a small amount of $\mathrm{CH}_{3} \mathrm{COO}^{-}$. So a 1.0 F solution of acetic acid means that $1.0=\left[\mathrm{CH}_{3} \mathrm{COOH}\right]+\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]$

Mass Balance (material balance) - conservation of matter; the quantity of all species in a solution containing a particular atom (or group of atoms) must equal the amount of that atom (or group) delivered to the solution.

EX 3. What is the mass balance equation for a solution prepared by adding 0.100 moles of ammonia to 1.000 L of water

Major Species
NH_{4}^{+}

H 9-1 Strong Acids and Bases (Systematic Approach)

EX 4. What is the pH of a $1.0 \times 10^{-8} \mathrm{M}$ solution of HBr ?

A systematic treatment is only needed in a small range of acid and base concentrations. Outside this range $\left[\mathrm{H}^{+}\right]$from K_{w} is either too small ($>10^{-6}$) or the solution cannot practically be prepared $\left(<10^{-8}\right)$.

H 9-2 - 9-3 Weak Acid Equilibria (Systematic Approach): $K=x^{2} I(F-x)$

EX 5. Set up the systematic equations for a 0.0100 M solution of $\mathrm{CH}_{3} \mathrm{COOH}$.

1) reactions
2) species
3) charge balance
4) material balance

Major Species
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
$\mathrm{H}_{2} \mathrm{O}$

Set up an ICE table corresponding to EX 5 and correlate the approximations.

$$
\mathrm{HA}(a q)+\mathrm{H}_{2} \mathrm{O}(1)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{A}^{-}(a q)
$$

Initial
Change
Equilibrium

EX 6. What is the pH of 0.050 M weak acid whose $K_{\mathrm{a}}=1.59 \times 10^{-10}$?

Approximations in Equilibrium Calculations (H p 195, Z p. 207)
1% rule: $[H A]_{0}-x \approx[H A]_{0}$ if $x \leq 1 \%[H A]_{0}$ (Zumdahl uses a more liberal 5% rule)

Dilution of Weak Acid

EX 7. $\mathrm{Ka}_{\mathrm{a}}=1.76 \times 10^{-5}$ for acetic acid, $\mathrm{CH}_{3} \mathrm{COOH}$. Determine $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$, pH , and \% ionization for 0.010 M
and 0.0010 M acetic acid.
Major Species

H 9-4 Calculating the pH of Weak Base Solutions, $K_{b}=x^{2} I(F-x)$

EX 10. $K_{b}=1.8 \times 10^{-5}$ for NH_{3}. What is the pH of a 0.25 M solution of ammonia in water? $\mathrm{NH}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(I)<=\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{NH}_{4}^{+}(\mathrm{aq})$

Ammonia

Z 7.8 Acid-Base Properties of Salt and Metal Ion Solutions

Salt - any ionic compound than does not contain OH^{-}as the anion. The cations (anions) of salts can have acidic (basic) properties if they are the conjugate acid (base) of a weak base (acid).

cation*	anion**	example	pH of solution
from strong base	from strong acid (conjugate base of)	$\mathrm{MgI}_{2}, \mathrm{KClO}_{4}$	neutral
from strong base	from weak acid (conjugate base of)	$\mathrm{KF}, \mathrm{AgCN}$	basic
from weak base (conjugate acid of)	from strong acid (conjugate base of)	$\mathrm{NH}_{4} \mathrm{Br}$	acidic
from weak base (conjugate acid of)	from weak acid (conjugate base of)	$\mathrm{NH}_{4} \mathrm{NO}_{2}$	acidic if $K_{\mathrm{a}}>K_{\mathrm{b}}$ basic if $K_{\mathrm{b}}>K_{\mathrm{a}}$ neutral if $K_{\mathrm{a}}=K_{\mathrm{b}}$
highly charged metal ion (hydrated in water)	from strong acid (conjugate base of)	$\left.\mathrm{Al(NO}_{3}\right)_{3}, \mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}$	acidic

*cation from strong base (Group I and II hydroxides, excluding Be) and silver:
$\mathrm{Li}^{+}, \mathrm{Na}^{+}, \mathrm{K}^{+}, \mathrm{Rb}^{+}, \mathrm{Cs}^{+}$
$\mathrm{Mg}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$
Ag^{+}
**anion from strong acid: conjugate base of six of the seven common strong acids
$\mathrm{C}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$
$\mathrm{ClO}_{4}^{-}, \mathrm{ClO}_{3}^{-}, \mathrm{NO}_{3}^{-}$(not HSO_{4}^{-}- conjugate base of a strong acid so it is an ineffective base, but has a proton so it is acidic)
metal ions in solution
Due to ion-dipole forces highly charged metal cations ($\mathrm{Al}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Fe}^{3+}$, etc) dissolve in water forming hydrated species. The electronegative O atom of water is closest to the positively charged metal. The high charge polarizes the $\mathrm{O}-\mathrm{H}$ bonds of water, weakening them, and making them more acidic.

$$
\mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}{ }^{3+}(a q)+\mathrm{H}_{2} \mathrm{O}(a q) \rightleftharpoons \mathrm{Al}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}(\mathrm{OH})^{2+}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q)
$$

Summary of Equilibria Involving Weak Acids and Bases

determined by properties of the solvent, generally water
autoionization of water - water ionization constant, K_{w}

$$
2 \mathrm{H}_{2} \mathrm{O}(1)<=>\mathrm{H}_{3} \mathrm{O}^{+}(a q)+\mathrm{OH}^{-}(\mathrm{aq}) \quad \mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{OH}^{-}\right]=1.01 \times 10^{-14}\left(\text { at } 25^{\circ} \mathrm{C}\right)
$$

pH scale

$$
\begin{aligned}
\mathrm{pH}=-\log _{10}\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{aligned}=>\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=10^{-\mathrm{pH}} \quad \mathrm{pOH}=-\log _{10}\left[\mathrm{OH}^{-}\right]=>\left[\mathrm{OH}^{-}\right]=10^{-\mathrm{pOH}} .
$$

$$
\begin{aligned}
& \text { acid (HA) dissociation } \\
& \qquad \begin{aligned}
& \mathrm{HA}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(1)<=>\mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{A}^{-}(\mathrm{aq}) K_{\mathrm{a}}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{-}\right][\mathrm{A}]}{[\mathrm{HA}]} \\
&=\frac{x^{2}}{\mathrm{~F}-x} \text { or } \mathrm{p} K_{a}=-\log _{10} K_{\mathrm{a}} \\
& \text { if } \mathrm{HA} \text { not too dilute or too weak }
\end{aligned}
\end{aligned}
$$

base (B:) ionization

$$
\mathrm{B}:(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)<=>\mathrm{OH}^{-}(\mathrm{aq})+\mathrm{BH}^{+}(\mathrm{aq})
$$

$$
K_{\mathrm{b}}=\frac{\left[\mathrm{OH}^{-}\right]\left[\mathrm{BH}^{+}\right]}{[\mathrm{B}:]}=\frac{x^{2}}{\mathrm{~F}-x} \text { or } \mathrm{p} K_{\mathrm{b}}=-\log _{10} K_{\mathrm{b}}
$$

conjugate acid/base pair

$$
K_{\mathrm{a}} \times K_{\mathrm{b}}=K_{\mathrm{w}} \quad \text { or } \mathrm{p} K_{\mathrm{w}}=\mathrm{p} K_{\mathrm{a}}+\mathrm{p} K_{\mathrm{b}}
$$

boxed entries => definitions which are independent of temperature

of course, rigorously, the equilibrium constants should be given in terms of activities

