What is the pH of a 1.0×10^{-8} M solution of HBr?

It cannot be pH 8.00. It should be an acidic solution with a pH lower than 7.00!

There are two reactions that are important.

 $HBr(aq) + H_2O(I) \rightarrow H_3O^+(aq) + Br^-(aq)$

 $2 H_2O(I) \iff H_3O^+(aq) + OH^-(aq)$

H 8-4 Systematic Treatment of Equilibrium

General approach includes

- 1. write down the pertinent chemical reactions and their equilibrium expressions
- 2. write down all species present in solution according to #1
- 3. set up the charge balance equation (the solution must be electrically neutral so the number of positive charges = the number of negative charges)
- 4. apply the material balance equation (conservation of matter) may be more than one
- 5. are there enough equations to solve for the unknowns?

Charge Balance - solution must be electrically neutral

EX 1. Write the charge balance for a solution containing only the following ions: H+, OH-, Na+, Ba²⁺, PO₄³⁻, Ag+, SO₄²⁻

EX 2. Write the charge balance for a solution containing $(NH_4)_3PO_4$. Be sure to consider all possible equilibrium reactions.

Formality (F) and Molarity (M)

same for a species that does not dissociate into ions (or react with water to produce ions) such as glucose

molarity is the concentration of the actual species in solution such as 1 M Cl-

formality is the concentration originally placed in water – acetic acid (CH₃COOH) is a weak acid and reacts with water to produce a small amount of CH₃COO⁻. So a 1.0 F solution of acetic acid means that $1.0 = [CH_3COOH] + [CH_3COO^-]$

Mass Balance (material balance) – conservation of matter; the quantity of all species in a solution containing a particular atom (or group of atoms) must equal the amount of that atom (or group) delivered to the solution.

H 9-1 Strong Acids and Bases (Systematic Approach)

H 9-2 – 9-3 Weak Acid Equilibria (Systematic Approach): $K = x^2 / (F - x)$

Approximations in Equilibrium Calculations (H p 195, Z p. 207)

1% rule: $[HA]_0 - x \approx [HA]_0$ if $x \le 1\%$ $[HA]_0$ (Zumdahl uses a more liberal 5% rule)

Dilution of Weak Acid

effect on [H₃O⁺]

H 9-4 Calculating the pH of Weak Base Solutions, $K_b = x^2 / (F - x)$

EX 10. $K_b = 1.8 \times 10^{-5}$ for NH₃. What is the pH of a 0.25 M solution of ammonia in water? NH₃(aq) + H₂O(*l*) <=> OH⁻(aq) + NH₄⁺(aq)

Ammonia

Major Species

 NH_4^*

NH₃

 H_2O

Z 7.8 Acid-Base Properties of Salt and Metal Ion Solutions

Salt – any ionic compound than does not contain OH⁻ as the anion. The cations (anions) of salts can have acidic (basic) properties if they are the conjugate acid (base) of a weak base (acid).

cation*	anion**	example	pH of solution
from strong base	from strong acid	MgI ₂ , KClO ₄	neutral
	(conjugate base of)		
from strong base	from weak acid	KF, AgCN	basic
	(conjugate base of)		
from weak base	from strong acid	NH4Br	acidic
(conjugate acid of)	(conjugate base of)		
from weak base	from weak acid	NH4NO2	acidic if $K_a > K_b$
(conjugate acid of)	(conjugate base of)		basic if $K_b > K_a$
			neutral if $K_a = K_b$
highly charged metal ion	from strong acid	AI(NO ₃) ₃ , Cr(H ₂ O) ₆ ³⁺	acidic
(hydrated in water)	(conjugate base of)		

*cation from strong base (Group I and II hydroxides, excluding Be) and silver:

Li⁺, Na⁺, K⁺, Rb⁺, Cs⁺ Mg²⁺, Ca²⁺, Sr²⁺, Ba²⁺ Ag⁺

**anion from strong acid: conjugate base of six of the seven common strong acids

 $C\lambda^-$, Br⁻, I⁻ ClO₄⁻, ClO₃⁻, NO₃⁻ (**not** HSO₄⁻ - conjugate base of a strong acid so it is an ineffective base, but has a proton so it is acidic) metal ions in solution

Due to ion-dipole forces highly charged metal cations (Al³⁺, Cr³⁺, Fe³⁺, etc) dissolve in water forming hydrated species. The electronegative O atom of water is closest to the positively charged metal. The high charge polarizes the O – H bonds of water, weakening them, and making them more acidic.

Summary of Equilibria Involving Weak Acids and Bases

determined by properties of the solvent, generally water

autoionization of water - water ionization constant, Kw

$$2 H_2O(l) \iff H_3O^+(aq) + OH^+(aq)$$

$$K_w = [H_3O^+][OH^-] = 1.01 \times 10^{-14} \text{ (at } 25^{\circ}C)$$

$$pH \text{ scale}$$

$$pH = -\log_{10}[H_3O^+] \Longrightarrow [H_3O^+] = 10^{-pH}$$

$$pCH = -\log_{10}[OH^-] \Longrightarrow [OH^-] = 10^{-pOH}$$

$$pK_w = -\log_{10}K_w \Longrightarrow pK_w = pH + pOH = 14 \text{ (at } 25^{\circ}C)$$
acid (HA) dissociation

$$HA(aq) + H_2O(l) \iff H_3O^+(aq) + A^-(aq)$$

$$K_a = \frac{[H_3O^-][A^-]}{[HA]} = \frac{x^2}{F - x} \text{ or } pK_a = -\log_{10}K_a$$
if HA not too dilute or too weak
base (B:) ionization

$$B:(aq) + H_2O(l) \iff OH^-(aq) + BH^+(aq)$$

$$K_b = \frac{[OH^-][BH^+]}{[B:]} = \frac{x^2}{F - x} \text{ or } pK_b = -\log_{10}K_b$$
if B: not too dilute or too weak
if B: not too dilute or too weak

boxed entries => definitions which are independent of temperature

of course, rigorously, the equilibrium constants should be given in terms of activities